Time-varying auditory gain control in response to double-pulse stimuli in harbour porpoises is not mediated by a stapedial reflex
نویسندگان
چکیده
Echolocating animals reduce their output level and hearing sensitivity with decreasing echo delays, presumably to stabilize the perceived echo intensity during target approaches. In bats, this variation in hearing sensitivity is formed by a call-induced stapedial reflex that tapers off over time after the call. Here, we test the hypothesis that a similar mechanism exists in toothed whales by subjecting a trained harbour porpoise to a series of double sound pulses varying in delay and frequency, while measuring the magnitudes of the evoked auditory brainstem responses (ABRs). We find that the recovery of the ABR to the second pulse is frequency dependent, and that a stapedial reflex therefore cannot account for the reduced hearing sensitivity at short pulse delays. We propose that toothed whale auditory time-varying gain control during echolocation is not enabled by the middle ear as in bats, but rather by frequency-dependent mechanisms such as forward masking and perhaps higher-order control of efferent feedback to the outer hair cells.
منابع مشابه
The responses of horses to predator stimuli
It is not known whether the instincts of wild horses have remained strong during their centuries of domestication. Knowledge of this matter would give riders the opportunity to know more about the behavior of horses and consequently about safety for both horses and riders. In this current research, we studied the behavior of fifteen Caspian miniature horses of different ages and sexes using sti...
متن کاملA preliminary study of endoscopic acoustic stapedial reflex in chronic otitis media.
OBJECTIVE To introduce the endoscopic acoustic stapedial reflex (EASR) as a technique for assessing stapedial mobility in ears with chronic otitis media (COM). METHODS This prospective study was performed from February 2008 to February 2009, patients with COM presented to the Otology Clinic, King Abdul-Aziz University Hospital, Riyadh, Kingdom of Saudi Arabia were examined with a rigid ear en...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملKeeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system.
Animals that use echolocation (biosonar) listen to acoustic signals with a large range of intensities, because echo levels vary with the fourth power of the animal's distance to the target. In man-made sonar, engineers apply automatic gain control to stabilize the echo energy levels, thereby rendering them independent of distance to the target. Both toothed whales and bats vary the level of the...
متن کامل